The BFGS method with exact line searches fails for non-convex objective functions
نویسنده
چکیده
This work shows that the BFGS method and other methods in the Broyden class, with exact line searches, may fail for non-convex objective functions.
منابع مشابه
Block Bfgs Methods
We introduce a quasi-Newton method with block updates called Block BFGS. We show that this method, performed with inexact Armijo-Wolfe line searches, converges globally and superlinearly under the same convexity assumptions as BFGS. We also show that Block BFGS is globally convergent to a stationary point when applied to non-convex functions with bounded Hessian, and discuss other modifications...
متن کاملOn the divergence of line search methods
We discuss the convergence of line search methods for minimization. We explain how Newton’s method and the BFGS method can fail even if the restrictions of the objective function to the search lines are strictly convex functions, the level sets of the objective functions are compact, the line searches are exact and the Wolfe conditions are satisfied. This explanation illustrates a new way to co...
متن کاملOn the Behavior of Damped Quasi-Newton Methods for Unconstrained Optimization
We consider a family of damped quasi-Newton methods for solving unconstrained optimization problems. This family resembles that of Broyden with line searches, except that the change in gradients is replaced by a certain hybrid vector before updating the current Hessian approximation. This damped technique modifies the Hessian approximations so that they are maintained sufficiently positive defi...
متن کاملNew Quasi-Newton Optimization Methods for Machine Learning
This thesis develops new quasi-Newton optimization methods that exploit the wellstructured functional form of objective functions often encountered in machine learning, while still maintaining the solid foundation of the standard BFGS quasi-Newton method. In particular, our algorithms are tailored for two categories of machine learning problems: (1) regularized risk minimization problems with c...
متن کاملBFGS with Update Skipping and Varying Memory
We give conditions under which limited-memory quasi-Newton methods with exact line searches will terminate in n steps when minimizing n-dimensional quadratic functions. We show that although all Broyden family methods terminate in n steps in their full-memory versions, only BFGS does so with limited-memory. Additionally, we show that full-memory Broyden family methods with exact line searches t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 99 شماره
صفحات -
تاریخ انتشار 2004